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Abstract

As humanity aspires to explore the solar system and investigate distant worlds such as the Moon, Mars, and
beyond, there is a growing need to estimate and model the rate of clocks on these celestial bodies and compare
them with the rate of standard clocks on Earth. According to Einstein’s theory of relativity, the rate of a standard
clock is influenced by the gravitational potential at its location and its relative motion. A convenient choice of local
reference frames allows for the comparison of local time variations of clocks due to gravitational and kinematic
effects. We estimate the rate of clocks on the Moon using a locally freely falling reference frame coincident with
the center of mass of the Earth–Moon system. A clock near the Moon’s selenoid ticks faster than one near the
Earth’s geoid, accumulating an extra 56.02 μs day−1 over the duration of a lunar orbit. This formalism is then used
to compute the clock rates at Earth–Moon Lagrange points. Accurate estimation of the rate differences of
coordinate times across celestial bodies and their intercomparisons using clocks on board orbiters at Lagrange
points as time transfer links is crucial for establishing reliable communications infrastructure. This understanding
also underpins precise navigation in cislunar space and on celestial bodies’ surfaces, thus playing a pivotal role in
ensuring the interoperability of various position, navigation, and timing systems spanning from Earth to the Moon
and to the farthest regions of the inner solar system.

Unified Astronomy Thesaurus concepts: Celestial mechanics (211); Gravitation (661); Earth (planet) (439); The
Moon (1692)

1. Introduction

More than 50 yr after the first lunar landing, a multinational
consortium, which includes NASA, is working toward a return
to the Moon under the Artemis Accords (Artemis Plan 2020;
ESA 2022; NASA 2023). Our ability to explore distant worlds
will require the design and development of a communication and
navigation infrastructure within and beyond cislunar space. With
the expectation of a significant increase in assets on the lunar
surface and in cislunar space in the near future, developing a
robust architecture for accurate position, navigation, and timing
applications has become a matter of paramount interest.

Communication and navigation systems rely on a network of
clocks that are synchronized to each other within a few tens of
nanoseconds. As the number of assets on the lunar surface
grows, synchronizing local clocks with higher precision using
remote clocks on Earth becomes challenging and inefficient.
An optimal solution would be to draw from the heritage of
global navigation satellite systems by envisioning a system or
constellation time common to all assets and then relating this
time to clocks on Earth.

The relativistic framework using a generalized Fermi frame
presented here enables us to compare clock rates on the Moon
and cislunar Lagrange points with respect to clocks on Earth by
using a metric appropriate for a locally freely falling frame such
as the center of mass of the Earth–Moon system in the Sun’s
gravitational field (Fermi & Lincei 1922; Ashby & Bertotti
1986). The International Astronomical Union (IAU) resolutions
provide a fully relativistic framework for transformations of
coordinates (including time) and gravitational potentials and
parameterizing potential coefficients using post-Newtonian

potentials for constructing local reference systems for all celestial
bodies in the solar system (IAU 2000a, 2000b; Soffel et al. 2003;
Kaplan 2006). The relativistic celestial mechanics of the Earth–
Moon system can also be described by adopting Jacobi
coordinates within the framework of IAU resolutions (Kopeikin
& Xie 2010). More recently, the IAU Resolutions Committee
has approved proposals to establish a Standard Lunar Celestial
System and Lunar Coordinate Time (IAU 2024). Here, we
explicitly describe a framework to apply Einstein’s theory of
relativity for estimating and comparing clock rates to within an
accuracy of a few nanoseconds a day on celestial bodies,
constituting a restricted three-body problem.
The time measured by a clock at any given location is the

proper time. Relativity of simultaneity implies that no two
observers will agree on a given sequence of events if they are in
different reference frames (Einstein 1996). In other words,
clocks in different reference frames tick at different rates. The
gravitational and motional effects affect the ticking rate of
clocks when compared with “ideal” clocks that are at rest and
sufficiently far away from any gravitating mass. For example,
clocks farther away from Earth tick faster, and clocks in
uniform motion will tick slower with respect to “ideal” clocks,
and vice versa. Therefore, choosing an appropriate reference
frame becomes essential for obtaining self-consistent results
when comparing clocks on two celestial bodies. The gravita-
tional effects on clocks and clock comparisons add another
layer of complexity to synchronization challenges in deep-
space communications (Burleigh et al. 2003; Burt et al. 2021).
In this paper, we mainly seek answers to the following

questions: what is a good choice for the coordinate system that
can be used to relate the proper times on the Earth and the
Moon? What is an appropriate choice for the locations of ideal
clocks on the surfaces of the Earth and Moon that makes it
easier to compare their proper times? What is the proper time
difference between clocks on the Moon and the Earth? What
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are the proper time differences between clocks located at the
Earth–Moon Lagrange points and the Earth? The stability
offered by Lagrange points provides a low acceleration noise
environment for spacecraft with clocks. The relativistic
corrections for such clocks can be precisely estimated, as their
positions and velocities are well determined and can be used to
compare the proper times of clocks on Earth and the Moon and
in cislunar orbits.

In Section 2, we use the global positioning system (GPS) as
an example to illustrate the relativistic effects on clocks if the
Moon is treated just like an artificial satellite of the Earth and
obtain a rough estimate for the clock rates on the Moon with
respect to clocks on the geoid. Section 3 introduces a freely
falling coordinate system with its center coinciding with the
center of mass of the Earth and Moon. Section 4 compares the
rate offset of a clock on the lunar surface to clocks on the geoid
using this freely falling coordinate system, assuming the Moon
is in a Keplerian orbit around the Earth. The results are
compared with precise orbits for the Moon obtained using the
latest planetary ephemerides, DE440 (Park et al. 2021). The
time rate offsets at Earth–Moon Lagrange points L1, L2, L3, and
L4/L5 are also discussed in Section 5. Conclusions and future
outlook are presented in Section 5. Appendices A and B
introduce the framework for developing the metric used in all
calculations. Appendix C justifies our assumptions of using a
Keplerian model ignoring tidal effects, and a discussion in
Appendix D establishes general covariance, meaning that the
results are coordinate-independent.

2. Clocks in Orbit

An instructive example of establishing a coordinate time on
Earth is the GPS time. The constellation clocks are set to beat at
the average coordinate rate corresponding to clocks at rest on the
surface of the rotating Earth by applying a “factory frequency
offset” to the clocks before launch, which is (Ashby 2003)

( )D
= +

Ff

f

GM

ac c

3

2
, 1e

2
0
2

where a is the satellite semimajor axis, G is Newton’s
gravitational constant, Me is the mass of the Earth, c is the
speed of light in vacuum, and Φ0 is the effective gravitational
potential in the rotating frame, which is the sum of the static
gravitational potential of the Earth and a centripetal
contribution (Ashby 2003). The IAU defines a “Terrestrial
Time” (TT) by adopting a fixed value for Φ0/c

2 (IAU 2000a;
Kaplan 2006):
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If we simply substitute into Equation (1) the length of the
semimajor axis of the Moon’s orbit, 3.84748× 108 m, the “offset”
becomes −6.7964× 10−10. To convert to a rate difference in
microseconds per day, multiply by 86,400× 106μs day−1,
yielding 58.721μs day−1. This does not include the effect of the
Moon’s gravitational potential. Also, this approach can be
questioned because it does not make sense to treat the Moon’s
potential, from the point of view of an Earth-based inertial frame,
as an Earth satellite; the Moon’s potential should be treated as a
tidal potential. Nevertheless, a standard clock on an Earth satellite
at the distance of the Moon would beat faster than a standard clock

at rest on Earth by 58.721μs day−1, not including any effect from
the gravitational potential of the Moon. This is a combination of
Earth’s gravitational potential and second-order Doppler shifts at
the orbiting satellite.
In addition, there are well-understood periodic effects arising

from orbit eccentricity, with an additional contribution to the
rate on the satellite clock given by (Ashby 2003)
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For a satellite in Keplerian orbit, the periodic contribution to
the rate is

( )
( ( ) ) ( )D =

-
+

GM e

c a e
f e

2

1
cos , 4e

2 2

where e is the eccentricity and f is the true anomaly. Numerical
evaluation of Equation (4) yields a value of ´1.2695

( ( ) )+- f e10 cos12 or ( ( ) ) m+ -f e0.1097 cos sday 1. The time
average of the combination ( ) +f ecos is zero, so this term
does not contribute to the average rate.
This model uses an eccentric Keplerian orbit in a local

inertial frame centered on Earth’s center of mass. The center of
mass of the Earth and Moon approximately follows a Keplerian
orbit. However, for the Earth–Moon system, one cannot have a
Keplerian orbit in a coordinate system centered on the Earth
and a Keplerian orbit in a coordinate system centered on the
Earth–Moon center of mass with the same orbit parameters.
There are also relativistic effects arising from changes in time
and length scales, Lorentz contraction, and changes in tidal
effects.
In the following sections, we shall investigate a local inertial

system with an origin at the Earth–Moon center of mass. This is
a freely falling inertial frame only in the Sun’s gravitational
field. The reason for using such a frame is that the Earth and
Moon are treated more or less equivalently; tidal potentials are
due only to the Sun. By addressing relativistic effects in this
simple system, it may be expected that the main relativistic
corrections can be better understood. We work in a plane
containing the Earth and Moon that is inclined with respect to
the ecliptic plane. Calculations are carried out only to order
c−2. Contributions from the tidal potentials of other solar
system bodies are left out. The metric signature is (−1, 1, 1, 1)
with Greek indices running from 0 to 3.

2.1. Local Frame for the Earth

In establishing a coordinate time on and near the Earth, two
relativistic effects are compensated by adjusting the rates of
standard clocks. These are (a) the gravitational potential at the
geoid and (b) the second-order Doppler shift due to the Earth’s
rotation. The gravitational potential at the equator can be
estimated from existing models of Earth’s gravitational
potential. Viewed from an Earth-centered inertial frame, the
second-order Doppler shift is

⎜ ⎟
⎛
⎝

⎞
⎠

( )d w
= -

f

f

a

c2
, 5e e

Dop

2 2

2

where ωe is Earth’s angular rotation rate and ae is the equatorial
radius. Because the Earth’s geoid is nearly a surface of
effective hydrostatic equilibrium, all atomic clocks on the geoid
beat at equal rates, and this rate can be calculated on the Earth’s
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geoid at the equator. The effective potential Φ0 in Equation (2)
represents the fractional rate difference between an atomic
clock at rest at infinity if the Earth were the only celestial body
and an atomic clock fixed on the geoid of the rotating Earth.

A locally inertial, freely falling reference frame can be
constructed at the center of mass of the Earth. Such a
construction (see Appendices A and B) gives the following
expression for the fundamental scalar invariant ds2 to order c−2

(Ashby & Bertotti 1986):

( )
( )

( )∣ ( )
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where dx0, dx, dy, and dz are the changes in coordinate time
and coordinate displacements. We have explicitly included the
gravitational potential of the Earth, Φe, and the tidal potentials
of the Moon and Sun, (Φm+Φs)|tidal, but have left out the small
contributions from tidal potentials of other solar system bodies.
If the timescale is adjusted by
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then the scalar invariant becomes
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With this adjustment in scale, apart from tidal effects, which
average to near zero, clocks at rest on the geoid beat at the rate
of International Atomic Time, defined by atomic clocks at rest
on the geoid. Coordinate time suitable for use in navigation and
timekeeping near the Earth’s surface is then obtained by
synchronizing clocks in the local inertial frame (Ashby &
Allan 1979). The proper time on a clock at rest on the geoid
then, apart from tidal contributions, beats at the rate of
coordinate time because the term Φ0 cancels the potential and
second-order Doppler shifts on the geoid.

2.2. Local Frame for the Moon

While the Moon appears fairly rigid, it is nearly spherical
due to hydrostatic equilibrium. One can imagine a locally
inertial, freely falling reference frame with its origin at the
Moon’s center of mass; see Appendix A. Near the Moon, the
scalar invariant will be
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Omitting tidal terms for the moment, a standard clock at
rest at the Moon’s equator will be subject to the gravita-
tional potential of the Moon and to time dilation from the
Moon’s rotation. Using a model of the Moon’s
potential (Bertone et al. 2021) that includes spherical

harmonics of degree and order up to 350, the gravitational
potential on the Moon’s equator and second-order Doppler
shift, respectively, are found to be approximately Φm|θ=π/2=
−2.82101(7)× 106 m2 s−2 and ( )w- = - -a 2 10.70118 14 m sm m

2 2 2 2,
where am= 1,738,140(123)m is the equatorial radius and
ωm= 2.661621× 10−6 s−1 is the sidereal rotation rate of the
Moon. The Moon’s rotation is tidally locked to the Earth.
Thus, we could define a constant Lm and a corresponding
equipotential surface or “selenoid” for the Moon:
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We may then, in analogy to the timescale change for the Earth,
define a new timescale for the Moon such that the scalar
invariant near the Moon becomes
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Then, apart from tidal effects, standard clocks at rest on an
effective equipotential of the rotating Moon will beat at equal
rates and can be used to define the rate of coordinate time on
the Moon: ( )- = -ds dx2 0 2.

3. Clock Rate Differences between Earth and the Moon

The Earth and the Moon orbit around their mutual center of
mass in different Keplerian orbits. Meanwhile, the center of
mass of the Earth–Moon system orbits around the Sun in an
approximately Keplerian orbit. To calculate the rate differences
between clocks on Earth and on the Moon, a fictitious locally
freely falling inertial frame is introduced at the Earth–Moon
center of mass. This makes it convenient to calculate the proper
times elapsed on moving clocks in terms of Keplerian motions
of the Earth and the Moon. The Sun’s contribution is only tidal
effects. If we omit the tidal potential of the Sun, the scalar
invariant takes a simple form (Appendix B):

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( ) ( )

- = - +
F

+
F

+ -
F

-
F

+ +

ds
c c

dx

c c
dx dy dz

1
2 2

1
2 2

. 12

e m

e m

2
2 2

0 2

2 2
2 2 2

Consider a clock fixed on the surface of the rotating geoid of
Earth. Since the geoid is a surface of approximate hydrostatic
equilibrium, if such clocks are viewed from the local inertial
frame, they beat at the same rate, which can be evaluated at the
equator. The proper time on the Earth-based clock becomes

⎛
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where the equatorial radius of the Earth is denoted by REeq, Ve

is the velocity of the Earth’s center of mass in the Earth–Moon
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coordinate system, and ve represents the velocity of the clock
on the equator due to Earth rotation. Expanding the velocity
term, taking square roots of both sides and rearranging,

⎜ ⎟
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The first two contributions can be identified with the quantity
Φ0. The contribution from the Moon’s potential can be well
approximated by setting

∣ ( )F
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c D
, 15m

R
m
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where D is the Earth–Moon distance. The dot product term
between velocities will depend on the specific position of the
clock and will vary with a daily period; this variation is similar
to the corrections to the gravitational potential contribution
from the Moon arising from the fact that the clock is not at the
center of the Earth. Omitting such contributions gives
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A similar argument applied to a clock fixed on the rotating
Moon’s surface of hydrostatic equilibrium gives the proper
time,
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where Vm is the velocity of the Moon’s center of mass and Φ0m,
discussed above, is the combination of the Moon’s gravita-
tional potential on the selenoid and second-order Doppler shift
due to the rotation of a clock on the Moon’s equator. Therefore,
the fractional frequency shift of a clock on the Moon’s equator
relative to a clock on Earth’s equator is
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where GMe and GMm are the standard gravitational parameters
for the Earth and Moon. The distance to the Moon from the
Earth, for a Keplerian orbit, is given by (see Appendix C)
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where f is the true anomaly plus possibly a constant, a is the
length of the semimajor axis, MT=Me+Mm, and e is the
eccentricity of the Moon’s orbit. The following combination of
quantities occurs frequently and can be reduced to a simpler
expression,
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where D and f are the time derivatives of D and f. The
velocities have radial as well as transverse components.
Consider first the quantity Ve

2. The radial and transverse

components of this velocity are
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where μ=Mm/MT= 0.012150. A similar calculation for Vm

yields

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )m= -
+ +

-
V

c

GM

ac

e f e

e2
1

2

1 2 cos

1
. 23m T

2

2
2

2

2

2

The difference of the squares of the velocities is then
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where f is the true anomaly plus possibly a constant, a is the
length of the semimajor axis, MT=Me+Mm, μ=Mm/MT=
0.012150, e is the eccentricity of the Moon’s orbit, and GMe

and GMm are the gravitational parameters of the Earth and the
Moon, respectively. Using Equation (24) in Equation (18), we
obtain
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Now we shall discuss the small position-dependent terms that
have been omitted. The actual distance from the center of the
Moon to a clock on Earth’s geoid is |−D+ re|, where re is the
vector from the Earth’s center to the clock on the equator and D
represents the vector from the center of the Earth to the center
of the Moon. Then

∣ ∣
· ( )-

- +
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D rGM
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. 26m

e
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Some of the position-dependent terms that we have not
accounted for are given in Table 1. Since the Moon is tidally
locked to the Earth, its center-of-mass velocity and the velocity
of a clock on the selenoid will be highly correlated. Therefore,
this term might give rise to a constant long-term average.
Omitting the position-dependent terms, we have used the
constants listed in Table 2 to evaluate the constant contribution

Table 1
Position-dependent Terms that Are Omitted in Calculating Rate Offsets

Position-dependent Term Rate Period
(μs day−1) (days)

GMmaec
−2D−2 0.0002 1

GMeamc
−2D−2 0.0045 ∼27

Ve · vec
−2 ≈ Veωeaec

−2 0.0055 1
Vm · vmc

−2 ≈ Vmωmamc
−2 0.0045 ∼27
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and the amplitude of the periodic term. We find
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Multiplying by 106× 86,400 μs to obtain a time difference per
day gives

( ) ( ) ( )m- -f56.0199 12 0.10843417 cos sday . 281

None of the above estimates include tidal effects. This
omission is because as a tidal force pushes back and forth on a
satellite, two other side effects have to be accounted for. These
are a change in the satellite’s position, which entails a change in
the gravitational potential of the body about which the satellite is
orbiting, and a change in the velocity of the satellite clock, which
changes its second-order Doppler shift. The residuals of the
gravitational potential and second-order Doppler shift for the
Earth–Moon system obtained by subtracting the Keplerian
model from that obtained from DE440 are graphed in Figure 1.
Previous work on such problems has shown that these changes
are of similar orders of magnitude. Summarizing, there are three
contributions to the frequency shift of a clock in a satellite that
are of similar orders of magnitude: (1) the perturbing tidal
potential itself, (2) the perturbed position that changes the
contribution from the main potential, and (3) the perturbed

velocity that changes the time dilation contribution. Although
the perturbing tidal potential can easily be estimated, calculating
the other two contributions is more complicated. When the
Keplerian model is compared with DE440 ephemerides, the
effects of solar tides are plotted in Figure 2.
TT is realized by comparing rates of standard clocks at rest

on Earth's geoid. Geocentric Coordinate Time (TCG) is defined
by the rate of a standard clock falling along with the center of
the Earth, not subject to Earth's potential (IAU 2000a). Then
d(TT)/d(TCG)= 1− LG (Petit & Wolf 2005). By analogy,
“Time on the Moon” (TM) could be defined by the rates of
standard clocks at rest on the Moon's selenoid, and a “Moon-
centric Coordinate Time (TCM) could be defined by the rate of
a standard clock at the center of the Moon, not subject to the
Moon's potential. Then d(TM)/d(TCM)= 1− Lm. If the
periodic term in Equation (18) is denoted by

( ) ( ) ( )=
-

- -L
GM GM

c D c
V V

1

2
, 29Gm

m e
m e2 2
2 2

the quantity LGm can be interpreted in terms of the approximate
ratio between the rates of coordinate times for translating
Equation (18) into the above terminology,

( ) ( )
( ) ( )

( )+
+

= + + -
L d

L d
L L L

1 TCM

1 TCG
1 . 30G

m
Gm G m

Therefore, to( )-c 2 , d(TCM)/d(TCG)= 1+ LGm. When com-
paring clocks at a level of 10−18 or better in fractional frequency,

Table 2
Constants and Values

Constant Parameter Value

GMe, Earth’s gravitational parameter 3.986004418(8) × 1014 m3 s−2 (Ries et al. 1992)
GMm, Moon’s gravitational parameter 4.90280031(44) × 1012 m3 s−2 (Konopliv et al. 2013)
c, speed of light in vacuum 299,792,458(0) ms−1 (CODATA 2006; Mohr et al. 2012)
−Φ0/c

2, LG 6.969290134(0) × 10−10, ∼60.2 μs day−1 (IAU 2000a)
−Φ0m/c

2, Lm 3.13881(15) × 10−11, ∼2.71 μs day−1; see Equation (10)
e, eccentricity of the Moon’s orbit 0.05490 (Daher et al. 2021)
a, Earth–Moon semimajor axis distance 3.84399 × 108 m (Daher et al. 2021)

Figure 1. The residual of the gravitational potential and second-order Doppler for MJD 59965 (2023 January 21) to MJD 60282 (2023 December 4).
ΔGM = GMm − GMe and D = -V V Vm e

2 2 2, where the subscripts refer to the Moon and the Earth, respectively, and the notation δ denotes that the quantities are
residuals with the Keplerian prediction subtracted from values computed using DE440. The deviation from an ideal Keplerian orbit due to tidal dynamics causes the
Moon to move faster as the separation between the Earth and the Moon decreases. The uncertainty on the estimated rate of the proper time on the Moon compared to
the proper time of the Earth’s geoid depends on how the above excursions are modeled and accounted for. Without clock corrections, the inaccuracy in time and
position estimates can be as high as 10% compared to clocks in well-determined orbits.
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this formula is an approximation. It may need to be reevaluated
by including higher-order terms in c−2, relativistic precessions,
and terms arising due to the interaction of multipole moments of
Earth and the Moon with tidal potentials of neighboring bodies.
LGm in Equation (30) is a rate with a periodic contribution arising
from Earth–Moon orbital eccentricity, which varies as the true
anomaly ( ) m- - f1.49373 0.10967 cos s day−1. The computed
offset of LGm compared with data from DE440 is given in
Figure 3.

It might appear that the second-order Doppler contribution to
the rate difference depends on the coordinate system used. In the
center-of-mass coordinates, a difference of squares of velocities
appears, but in a system in which the Earth is at rest, the square
of the relative velocity appears. Appendix D shows that
contributions from the centrifugal potential, which occurs in a
rotating coordinate system, resolve the apparent discrepancy.

4. Clocks at Earth–Moon Lagrange points

The Lagrange points or libration points offer a cost-effective
and low-noise environment around which spacecraft can be in
orbits that are slowly varying (Farquhar 1970). NASA and ESA
have commissioned many observatories in the last 50 yr that
have mostly been in Lissajous orbits around the Earth–Sun L2
point (ISEE-3/ICE 1978; Wilkinson Microwave Anisotropy
Probe (WMAP) 2001; Herschel Space Observatory 2009;
Planck 2009; Gaia 2013; LISA Pathfinder 2015). NASA’s
James Webb Space Telescope is in a halo orbit with a fixed
period (James Webb Space Telescope 2021). Halo orbits are
more expensive than Lissajous because the spacecraft thrusters
are to be fired more frequently to maintain orbits with fixed
periods.
All five Lagrange points for the Earth–Sun system and the

Earth–Moon are equilibrium points for objects with masses

Figure 2. Earth–Moon distance compared with the Keplerian model. The normalized distance between the Earth and the Moon computed using the latest planetary
ephemerides, DE440, is compared with the Keplerian model in the freely falling reference frame centered on the Earth–Moon barycenter. The tidal pull fluctuates at
the perigee crossing for the Moon’s orbit around the Earth as the Earth–Moon barycenter orbits the Sun. As a result, the actual Earth–Moon distance fluctuates
compared to the Keplerian model at the perigee crossing. The tidal acceleration on the moon due to the Earth and Sun is given in Equation (A11). DE440 accounts for
the first term in Equation (A11), whereas the Keplerian model does not include any tidal terms. The second term in Equation (A11) is much smaller than the first term
and is due to the Sun’s effect on the Earth–Moon barycenter. The phase offset between the Earth’s orbit around the Sun and the amplitude modulation of the Earth–
Moon distance is due to the inclination of the lunar orbit (∼5°) with respect to the equatorial coordinate system, with the xy-plane coinciding with the Earth’s equator.

Figure 3. Time-varying component of the difference between TCG and TCM. δLGm is obtained by computing the residuals for Equation (30) using DE440 and the
Keplerian model. The accumulated error in rate estimation throughout a lunar orbit can be as high as ∼75 ns. When the fluctuating components are modeled and
accounted for, the clocks on the Moon can be synchronized to within a few nanoseconds a day with daily steers of the order of 1 ns. For comparison, the timescale at
the National Institute of Standards and Technology (NIST) is routinely steered, and it can be as high as 250 ps day−1. As a result, the Coordinated Universal Time
(UTC) realized locally at Boulder, CO, UTC(NIST), stays within ±2 ns with respect to UTC over 1 yr.
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much smaller than the Earth, Sun, and Moon. L1, L2, and L3 are
saddle points that are unstable on a timescale of a few days as
tiny departures from equilibrium grow with an e-folding time
of a couple of days for the Earth–Moon system. The situation is
very different for L4 and L5. The Coriolis forces acting on small
masses at L4 and L5 of the Earth–Moon system allow a stability
of the order of millions of years (Lissauer & Chambers 2008).
We have not included the Coriolis effect in our treatment below
as the resulting velocity components are small, so their
contributions to the proper time are negligible.

For clocks in Lissajous or halo orbits, the relativistic
corrections are due mainly to second-order Doppler terms
from small velocity components, and the corresponding
frequency offsets can be precisely determined using spacecraft
attitude control data and ranging data from monitoring stations.
Therefore, the rate of clocks at Lagrange points with respect to
clocks on the Earth (and Moon) could play a vital role in
synchronizing remote clocks in cislunar space. The Queqiao-1,
2 relay and radio astronomy satellites for the Chinese Lunar
Exploration Program are currently in the halo and frozen orbits
at Earth–Moon L2 to support communications from the far side
of the Moon (Wu et al. 2017). Whitley and Martinez discuss
various satellite staging options in cislunar space (Whitley &
Martinez 2016).

4.1. Clock at Lagrange Point L1

We consider a clock at L1 and compare its rate to a clock on
Earth’s surface. L1 is between the Earth and the Moon and at a
distance x1D from the Moon. The net gravitational force toward
the Moon supplies the radial acceleration of L1, diminished by
the centripetal acceleration due to the rotation of the Earth–
Moon line to obtain x1= 0.15093428(1) (Szebehely 1967). The
metric, neglecting solar tides, is given by Equation (12). The
motion is so slow that the potential terms in the last line can be
neglected. The transverse and radial velocities of the clock due
to the rotation of the Earth–Moon line are
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So, the total velocity squared is
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For a clock on Earth’s surface,
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where ae is the equatorial radius of the Earth, J2 is the constant
describing the oblateness of the Earth, P2 is the Legendre
polynomial of degree 2, and θ is the latitude on the Earth’s
surface at a distance re from the center of the Earth. We
approximated the distance from the Moon’s center by D since
the position of the comparison clock on Earth’s surface is
unspecified. The total velocity of the clock on Earth’s surface is
composed of orbital velocity plus Earth’s rotational velocity:

( )w= + ´V V r , 35e eorbit

· ( ) ( ) ( )w w= + ´ + ´V r rV V 2 , 36e ee e
2

orbit
2

orbit
2

where ωe is the rate of Earth’s rotation. We set aside the cross-
term since the position of the Earth-based clock is changing
rapidly, and this term averages down. The centripetal term is
grouped with the Earth potential term. The square of the orbital
velocity is composed of the squared radial velocity and the
squared transverse velocity:

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( ( ) ) ( )m

= +

=
-

+ +

V D
M

M

df

dT

M

M
D

GM

a e
e f e

1
1 2 cos . 37

m

T

m

T

T

orbit
2 2

2 2 2
2

2
2

2



The Earth’s potential contribution plus the rotational term can
be replaced by 2Φ0/c

2. The proper time interval for the clock
on Earth is then approximately
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where cdT= dX0. The fractional rate difference is then
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Evaluating this result for x1 using values given in Table 2 gives
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The result is dominated by the term in Φ0 because the clock is
high up in the Earth’s potential.

4.2. Clock at Lagrange Point L2

The Lagrange point is at a distance x2D on the side of the
Moon away from Earth. Gravitational forces due to both Earth
and the Moon are toward the Earth and supply the force
necessary for the centrifugal acceleration, diminished by the
radial acceleration to obtain x2= 0.16783274(1). The velocity
squared of the clock, composed of radial and transverse
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velocities squared, is
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The proper time on a clock at L2 is then
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For a comparison clock on Earth, the analysis is the same as for
the clock at L1. Therefore, the fractional rate difference is
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Evaluating this result numerically gives
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The clock beats faster since L2 is farther out in Earth’s
gravitational potential.

4.3. Clock at Lagrange Point L3

L3 is behind the Earth, away from the Moon, and so of minor
interest for cislunar considerations. We include it here for
completeness. Let the distance of L3 from the Earth be
D(1− x3). The centripetal acceleration of this point is supplied
by the sum of the gravitational forces due to the Earth and the
Moon to give x3= 0.0070879383(1). The proper time on a
clock at L3, including its transverse and longitudinal velocities,
will be
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The fractional difference is
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Evaluation of this expression gives
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4.4. Clock at Lagrange Point L4 or L5

The clock is equidistant from Earth and the Moon. The total
velocity squared is the sum of the radial velocity squared and
the transverse velocity squared:
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The proper time on the clock is given by
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This reduces to
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Analysis of the comparison clock on Earth’s surface is the same
as for clocks at L1 or L2. The fractional rate difference is
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Evaluating this result numerically gives
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5. Conclusions

We presented a model based on Keplerian orbits for
estimating clock rates on the Moon and rates of clocks at
Lagrange points in cislunar space. We used values for
Keplerian orbit parameters that can be looked up; the only
parameters that fit were the times of periapsis passage. The
main numerical results obtained using our approach are given
in Table 3. We assumed a fixed eccentricity and fixed value for
the semimajor axis for the Moon’s orbit around the Earth, as
the present-day values for these parameters are very slowly
varying (Daher et al. 2021).
The planetary ephemeris DE440 was used to calculate the

potentials and velocities of Equation (25); the difference
between the DE440 calculation and the Keplerian model
calculations is only of the order of a few nanoseconds per day.
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Such differences are due to tidal potentials arising from solar
system bodies. Tidal effects can be readily modeled using
available orbit data and added as corrections to the Keplerian
model for synchronizing remote clocks on the Moon to within a
few hundred ps or better. Changes in time coordinates entail
changes in length scale, which should be of higher order than
the c−2 effects we have considered here (see, for example, the
length scale change in Equation (A4)). Our analysis should
serve as a reference point to ensure the accuracy and
consistency of results from numerical models when comparing
clocks at the 10−18 level of fractional frequency. Numerical
methods may be more suitable for estimating and comparing
other effects that we have not considered in this work, such as
relativistic precessions and post-Newtonian corrections. These
effects may be significant at the 10−19 level in fractional
frequency (less than a few tenths of a ps day–1).

This approach is also useful in calculating time comparisons
between Earth and clocks in the neighborhood of other solar
system bodies such as Mars. The available spherical harmonic
gravity potential for Mars allows an estimate of the quantity LM
for Mars that includes the average equatorial potential and
rotational effects, analogous to LG for Earth. In the case of
Mars, the only available coordinate systems for the description
of the problem are barycentric coordinates. The Earth–Mars
rate difference is dominated by the difference in the Sun’s
gravitational potential at the two locations. Keplerian models,
as well as computations using DE440, can be usefully
compared; this will be the subject of a future paper. Spatial
transformations accompanying time transformations also
remain to be examined as part of future work.
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Appendix A
Fermi Coordinates with the Origin at the Center of

the Moon

The Moon’s center of mass is in freefall, and therefore its
path is a geodesic. We disregard the effects of the Moon’s

multipole moments interacting with the tidal forces from the
Earth and the Sun, as they are less than 10−19 in fractional
frequency. It is useful to construct Fermi coordinates with the
origin at this point, since then the only forces on an object in
the neighborhood of the Moon due to external bodies are tidal
forces. In this coordinate system, the Christoffel symbols due to
external bodies are all zero at the origin, while contributions to
the Christoffel symbols from the Moon itself must be
“effaced,” or discarded, since they are infinite and such terms
cannot cause acceleration of the Moon itself. The following
calculation is taken only to order c−2. The geodesic in question
is complicated because the Earth–Moon system orbits the Sun
in an approximately Keplerian orbit, while the Moon and Earth
revolve around each other in a different, approximately
Keplerian orbit; this latter orbit is perturbed by the Sun’s tidal
potential and so is not known analytically. We can still
construct Fermi coordinates since many unknown quantities
cancel out. Here, we show how the metric given in
Equation (12) arises.
The combined gravitational potential of the Sun, Earth, and

Moon is given by

( )F = F + F + F , A1e s m

where the subscripts e, s, and m represent the potentials of the
Earth, Sun, and Moon, respectively. Beginning with the metric
in the solar system barycentric coordinates,
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where dX0 is the time and dX, dY, and dZ are the space
coordinate displacements in the barycentric coordinate system.
Lowercase letters will be reserved for corresponding quantities
in the local Fermi normal coordinate system.
We give the transformation equations between barycentric

coordinates and Fermi normal coordinates with the center at the
Moon as follows (Ashby & Bertotti 1986):
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Here, the notation (m) as in V(m) represents quantities
evaluated at the Moon’s center of mass. The quantity V(m) is
the magnitude of the Moon’s velocity. Transformation
coefficients can be derived and are

( ) ( ) ( ) ( ) ·

( ) ( ) ( )

¶
¶

= -
F + F

+ +

¶
¶

=
¶
¶

=

A rX

x

m m

c

V m

c

m

c
X

x

V m

c

X

x

V m

c

1
2

,

, , A5

s e

k

k k k

0

0 2

2

2 2

0

0

Table 3
Clock Rates Computed for Various Points of Interest

Quantity Location Rate
(μs day−1)

(dτm/dτe) − 1 Lunar surface ( ) ( )- f56.0199 12 0.10843417 cos
( )t t -d d 1L e1 L1 ( ) ( )- f58.612420 12 0.10736106 cos

( )t t -d d 1L e2 L2 ( ) ( )- f58.619639 12 0.12445590 cos

( )t t -d d 1L e3 L3 ( ) ( )- f58.702488 12 1.28439230 cos

( )t t -d d 1L e4 L4/L5 ( ) ( )- f58.707278 12 0.11045150 cos
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Transformation of the metric tensor is accomplished with the
usual formula,
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x
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where the summation convention for repeated indices applies.
Thus, for the time-time component of the metric tensor in the
freely falling frame,
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Expanding and keeping the terms of order c−2,
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Except for the Moon’s potential, the terms in the last line add
up to the solar tidal potential; for expanding Φe+Φs about the
origin and using

( ) ( ) ( )= -
¶ F + F

¶
A m

X
, A10k e s

k

we find
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where R is the vector from the Sun to the center of the Moon, re
is the vector from the Earth to the center of the Moon, and r is
the vector from the center of the Moon to the observation point
in local Fermi normal coordinates. Equation (A11) gives the
total tidal potential Φt/c

2 in the vicinity of the Moon due to the
Earth and the Sun. Thus,
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For the spatial component g11, we have
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where we have again expanded and kept only terms of order
c−2. Similarly,

( )= =g g g . A1422 33 11

The metric component g12 is given by
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Keeping only terms of order c−2, this becomes
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Similarly,

( )= =g g 0. A1713 23

Summarizing, the scalar invariant with the origin at the Moon’s
center is
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2
2 2

0 2

2 2
2 2 2

The speed of light c is a defined quantity, which does not
change when transforming coordinates. However, because the
timescale changes, the length scale will also change. A quantity
such as Φm/c

2 has been carried forward from barycentric
coordinates, and one might question whether it should change
due to time and length scale changes. However, such quantities
are already of order c−2, and any such changes would be of
higher order and are therefore negligible. In these coordinates,
contributions to Christoffel symbols of the second kind due to
external bodies are zero since tidal potentials have been
neglected.

Appendix B
Construction of Freely Falling Center-of-mass Frame

We illustrate the method of construction of a freely falling,
locally inertial frame by constructing such a frame at the center
of mass of the Earth–Moon system, assuming this point
revolves around the Sun in an elliptical Keplerian orbit. We
keep contributions only to order c−2 and neglect tidal
contributions from solar system bodies other than the Earth,
Moon, and Sun. We also neglect precessions.
The metric in isotropic barycentric coordinates including

only the Earth, Moon, and Sun is

⎛
⎝

⎞
⎠

⎛
⎝
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( )

( ) ( )

- = - +
F
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F
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ds
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dX dY dZ
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2 2 2

1
2 2 2

, B1

e m s
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2
2 2 2

0 2

2 2 2
2 2 2

where the gravitational potentials of the Earth, Moon, and Sun
are denoted by subscripts e, m, and s, respectively. We use
uppercase letters to denote quantities in barycentric coordinates
and lowercase letters for quantities in the freely falling center of
the mass frame. We are interested in a test particle at the Earth–
Moon center of mass. The local time coordinate x0 is
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determined by the proper time on an ideal clock at the center of
mass. Consider the transformation of coordinates (Ashby &
Bertotti 1986)
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Here Vcm and Acm represent the velocity and acceleration of the
center of mass.

The transformation coefficients are easily obtained from the
above coordinate transformations and are
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The metric component g00 in the center-of-mass frame, using
Equation (A7), is
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Expanding and keeping terms of order c−2,

( ) ( ) ·

( )

= - +
F + F

+
F

-
F

+
A r

g
c c

cm

c c
1

2 2 2 2
.

B7

e m s s cm
00 2 2 2 2

The last three terms in the last line of Equation (B6) add up to
twice the solar tidal potential; for expanding Φs about the
center-of-mass point and using

( )= -
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A
X
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we find
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where R is the vector from the center of the Sun to the center-
of-mass point. We denote the solar tidal potential by
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For the spatial component g11, we have
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where we have again expanded and kept only terms of order
c−2. Similarly,
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The metric component g12 is given by
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Keeping only terms of order c−2, this becomes

⎛
⎝

⎞
⎠

( )

( ) ( ) ( ) ( ) ( ) ( )
= - + + =

B15

g
V cm V cm

c

V cm V cm

c

V cm V cm

c2 2
0.12

1 2

2

1 2

2

2 1

2

Similarly,
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Summarizing, the scalar invariant in the center-of-mass system
is
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The speed of light c is a defined quantity, which does not
change when transforming coordinates. However, because the
timescale changes, the length scale will also change. A quantity
such as Φe/c

2 has been carried forward from barycentric
coordinates, and one might question whether it should change
due to time and length scale changes. However, such quantities
are already of order c−2, and any such changes would be of
higher order and are therefore negligible.

Appendix C
Equations of Motion of the Earth and Moon

The equations of motion of the Earth and Moon should be
checked to verify that, neglecting solar tidal forces, they orbit
around each other in eccentric Keplerian ellipses. The equation
of motion of the Earth, using coordinate time x0 as the
independent variable, is

( )
( )+ G - G =mn

m n

mn

m nd x

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx

dx
0. C1e
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i e e e e e
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0 2 0 0
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0 0 0
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The only Christoffel symbol contribution of order c−2 is
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e m
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This partial derivative must be evaluated at the Earth’s center,
which would introduce a singularity. However, a body cannot
cause the acceleration of its own center of mass, so the term
involving the Earth’s potential must be “effaced,” or discarded.
The equation of motion of the Earth then becomes
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A similar argument for the equation of the Moon gives
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The center of mass of the Earth–Moon system should be at
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M x M x

M
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i e e
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Taking the corresponding linear combinates of the above
equations of motion gives

( )
( )=

d x

dx
0, C6cm
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0 2

thus verifying that the center of mass of the Earth–Moon
system is not accelerated in this coordinate system.

Let the vector from the center of the Earth to the center of the
Moon be denoted by D. Then, taking the difference between
the above two equations of motion gives

( )
( )- =

D Dd

dx

GM

c D
0, C7T

2

0 2 2 3

where the distance between Earth and the Moon is given by
Equation (19), and n2a2=GMT/a. Then
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The Earth–Moon system satisfies Kepler’s equation in the
plane of the Earth–Moon orbit:
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In summary, we have constructed a locally inertial, freely
falling frame of reference with the origin at the center of mass
of the Earth and Moon and have shown that the Earth and
Moon revolve about their mutual center of mass in a Keplerian
orbit. The coordinates are not normal Fermi coordinates in the
sense that the Christoffel symbols of the second kind are not
zero at the origin of the coordinates when calculated in these
coordinates. This is because the geodesic along which the
origin falls does not account for forces on a test particle at the
origin due to Earth and the Moon—only forces due to the Sun
are accounted for.

Appendix D
Comparing Results in Rotating and Nonrotating

Coordinate Systems

We calculate the fractional difference between a clock on the
Moon’s surface and a clock on the Earth’s surface in three
different coordinate systems. These are (1) the center-of-mass
locally inertial system, (2) a rotating system in which the x-axis
is along the Earth–Moon line, and (3) a translated, rotating
system in which the Earth is at the origin of the coordinates and
the Earth–Moon line is in the ¢x -direction. We show that in all
three coordinate systems, the fractional rate difference is the
same. The Earth–Moon system is assumed to have a Keplerian
orbit. To simplify the calculations, we assume that the clocks
are on the surfaces of the respective bodies and along the line
joining the centers of the Earth and the Moon. This
approximation can be refined when the actual positions of the
clocks are specified.

D.1. Center-of-mass Inertial Coordinate System

The scalar invariant in the locally inertial frame whose origin
is at the center of mass of the Earth–Moon system, neglecting
tidal terms, is
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We use capital letters to denote coordinates in the center-of-
mass system. Anticipating that all velocities are small
compared to the speed of light and that the calculations are
carried out only to order 1/c2, the scalar invariant can be
written
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Then, using Equation (20),

( ( ) )
( )

( )+ =
+ +

-
V V

M GM e f e

c M a e

1 2 cos

2 1
. D4x y

e T

T

2 2
2 2

2 2 2

Then the proper time on a clock on the Moon during a
coordinate time interval dT is
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For a clock on Earth,
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Then
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and the proper time elapsed during a coordinate time interval
dT is
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The fractional difference is
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The difference in the last term represents a difference of
squares of velocities.

D.2. Rotating Center-of-mass Coordinates

Introduce a rotating system with an Earth–Moon line along
the new x-axis:
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The scalar invariant becomes
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For a clock on the Moon,
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For a clock on the Moon, there is no contribution from the
Sagnac term. The proper time interval is

⎜ ⎟

⎛

⎝
⎜ ⎛

⎝
⎞
⎠

⎞

⎠
⎟

⎛
⎝

⎞
⎠
( )

( ( ) )
( )

t = - - - -

= - - -
+ +

-

D14

d
GM

c D

GM

c R

df

dt

M D

c M

M D

c M
dt

GM

c D

GM

c R

M GM e f e

c a e M
dt

1
2 2

1
1 2 cos

2 1
.

m
e m

m

e

T

e

T

e m

m

e T

T

2 2

2 2 2

2 2

2 2

2 2

2 2

2 2

2 2 2



Note that there is a significant contribution from the centrifugal
potential. For a clock on Earth,
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The proper time interval is then
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The fractional proper time interval difference reduces exactly to
the expression in Equation (D9).

D.3. Rotating Coordinates with Earth at the Origin

For this system, the velocity of the Moon is the relative
velocity. This implies the use of a coordinate system in which
the Earth is not moving. This has to be a rotating coordinate
system with its origin coinciding with the Earth’s center.
Therefore, translating the origin to the center of the Earth, with
no change in the time variable,
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The scalar invariant becomes
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The potentials in the last term have been suppressed since they
do not contribute to the order of this calculation. For a clock on
the surface of the Moon,

( )
( )

¢ = ¢ =
¢ = ¢ =

x D x D

y y

; radial velocity

0; 0. D19

 


There is no contribution from the Sagnac term, but there is a
significant contribution from the centrifugal potential, repre-
senting the transverse velocity of the Moon. The radial velocity
of the Moon comes from the spatial part of the metric. The
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proper time interval for such a clock is
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For a clock on the surface of the Earth,

( )¢ = ¢ = ¢ = ¢ =x y x y 0. D21 

The proper time interval is
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It is easily seen that the fractional proper time difference reduces
to previously derived expressions. Thus, the fractional proper time
difference is the same in all three coordinate systems.
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